
TFS -2018-0889.R1 1 

   
Abstract—This paper provides a novel and better understanding 
of the performance potential of a non-singleton (NS) fuzzy system 
over a singleton (S) fuzzy system. It does this by extending 
sculpting the state space works from S to NS fuzzification, and it 
demonstrates that uncertainties about measurements, modeled 
by NS fuzzification: (1) fire more rules more often, manifested by 
a reduction (increase) in the sizes of first-order rule partitions for 
those partitions associated with the firing of a smaller (larger) 
number of rules—the coarse sculpting of the state space; (2) may 
lead to an increase or decrease in the number of type-1 (T1) and 
interval type-2 (IT2) first-order rule partitions, that now contain 
rule pairs that can never occur for S fuzzification—a new rule 
crossover phenomenon—discovered using partition theory; and, 
(3) may lead to a decrease, the same number, or an increase in 
the number of second-order rule partitions, all of which are 
system dependent—the fine sculpting of the state space. The 
author’s conjecture that: It is the additional control of the coarse 
sculpting of the state space, accomplished by pre-filtering and the 
max-min (or max-product) composition, that provides a NS T1 or 
IT2 fuzzy system with the potential to outperform a S T1 or IT2 
system, when measurements are uncertain. 
 

Index Terms—Interval type-2 fuzzy system, non-singleton 
fuzzifier, rule partitions, sculpting the state space, type-1 fuzzy 
system 

I. INTRODUCTION 
ECENTLY, Mendel [1], [2] has explained the performance 
potential of type-1 (T1), interval type-2 (IT2) and general 

type-2 (GT2) rule-based fuzzy systems (fuzzy systems, for 
short) as a greater sculpting of the state space. All of this was 
done for rule-based fuzzy systems that use a singleton (S) 
fuzzifier. This paper extends [1] to rule-based fuzzy systems 
that use a non-singleton (NS) fuzzifier.  
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NS fuzzification is used when the measurements that 
activate a fuzzy system are imperfect or uncertain (due to 
measurement noise, sensor imperfections or degradation, etc.). 
It models such a measurement as a fuzzy number (FN) 
(defined in Section II.A), so that, regardless of the cause of a 
measurement’s imperfections or uncertainties, they are treated 
within the framework of fuzzy sets and systems, and was 
introduced and extensively examined for T1 fuzzy systems by 
Mouzouris and Mendel [3]–[7], and extended to IT2 fuzzy 
systems by Liang and Mendel [8]. All of the theoretical results 
that are reported in these T1 and IT2 papers are included in [9, 
Chs. 6, 11, 12)] and [10, Chs. 3 and 9].  

To the best knowledge of the authors, only a few NS fuzzy 
system papers appeared between 2001 and 2010, namely [11], 
[12]–[14], and they were for T1 fuzzy systems. But, beginning 
in 2011, and continuing through 2019, there has been more 
interest in both T1 and IT2 NS fuzzy systems, e.g. [15]–[31]. 
These papers all demonstrate that a NS fuzzy system can 
outperform a S fuzzy system. But, why does this occur? 

It was already demonstrated and explained in [6], [9], [10] 
and [32], that during the inference process in a NS fuzzy 
system, the NS fuzzifier acts as a prefilter of the measured 
value,  ′x , of a rule antecedent-variable, x, i.e.   ′x → f ( ′x ) . 
To-date, prefiltering is the only explanation for the improved 
performance due to NS fuzzification.  

The goal of this paper is to provide further understanding of 
the performance improvement potential of a NS fuzzy system 
over a S fuzzy system, because it is only if such performance 
improvement potential exists should one even consider using a 
NS fuzzy system. This goal is accomplished herein by 
providing a new and novel additional explanation for the 
improved performance in terms of sculpting of the state space 
due to NS fuzzification. The author’s conjecture is that: It is 
the additional control of the coarse sculpting of the state 
space, accomplished by prefiltering and the max-min (or max-
product) composition, that provides a NS T1 or IT2 fuzzy 
system with the potential to outperform a S T1 or IT2 fuzzy 
system, when measurements are uncertain. 

This paper assumes that readers are familiar with T1 and 
IT2 fuzzy sets and systems, and first-and second-order rule 
partitions, as explained in [1, Sec. III]. 
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II. BACKGROUND 

A. Non-singleton Fuzzifiers 
Recall that, for an IF-THEN rule1 with p antecedents, 

    
x = (x1,...,xp )T ∈X1 × X2 ×!× X p ≡ X , in a T1 fuzzy system 

the fuzzifier maps  x = ′x  into a T1 fuzzy set (FS)   A ′x  in X. A 

T1 NS fuzzifier maps measurement  xi = ′xi  into a T1 fuzzy 

number (FN)2 for which 
  
µXi

( ′xi ) = 1  and µXi
(xi )  decreases 

from unity as xi  moves away from ′xi , and is denoted 
µXi
(xi | ′xi )  (e.g., the T1 FN in Fig. 1).  

For an IT2 fuzzy system, the fuzzifier maps  x = ′x  into an 
IT2 FS    

!A ′x  in X, and two kinds of NS fuzzifiers are possible, 
T1 NS and IT2 NS. In this paper, results are provided only for 
the T1 NS fuzzifier, because an understanding of NS 
fuzzification in an IT2 fuzzy system, in terms of sculpting the 
state space, can be accomplished by examining it only for the 
T1 NS situation (see Section VII in the SM for a verification 
of this). 

Additionally, in this paper, it is assumed that all variables 
are normalized to  [0,10] , and most examples are provided for 
(see Fig. 1) 	2δ = 4% and 12% of 10. Some examples are also 
provided for 	2δ = 24% of 10. 

B. Firing Level (Interval) in a NS T1 (IT2) Fuzzy System 
It is well known that, for a NS T1 (IT2) fuzzifier, when 

 x = ′x  the firing level (interval)    f l ( ′x )     ([ f l ( ′x ), f l ( ′x )])  for 
each rule   (l = 1,..., M )  is (e.g., [6], [8], [9, Chs. 6, 11, 12], [10, 
Chs. 3 and 9])3: 

      

    

NS T1 fuzzy system

f l ( ′x ) = Ti=1
p f l ( ′xi ) = Ti=1

p max
xi∈Xi

µXi
(xi | ′xi )!µ

Fi
l (xi )  

 (1) 

     

     

T1 NS IT2 fuzzy system

[ f l ( ′x ), f l ( ′x )] = [Ti=1
p f l ( ′xi ),Ti=1

p f l ( ′xi )]

f l ( ′xi ) = max
xi∈Xi

µXi
(xi | ′xi )!µ !Fi

l (xi )

f l ( ′xi ) = max
xi∈Xi

µXi
(xi | ′xi )!µ !Fi

l (xi )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (2) 

In these equations4, T and  !  denote t-norms, usually 
chosen to be the same, either as the product or the minimum, 
under-barred (over-barred) quantities denote lower (upper) 
MFs [LMFs (UMFs)], and  Fi

l     (
!Fi

l )  denotes the T1 (IT2) FS 

for the ith antecedent in the lth rule. In the sequel,  xi
∗  denotes  

 
1 For the structures of T1 and IT2 rules (which should be familiar to the 

readers of this paper), see Section I in the Supplementary Material (SM). 
2 Although there are different definitions of a T1 FN, in this paper a fuzzy 

set A in R is called a T1 FN if: (1) A is normal, (2) A is convex, and (3) A has 
bounded support. If a Gaussian MF is used than it is assumed that such a MF 
is truncated, so as to satisfy condition (3). 

3 Many times (1) and (2) are stated using “sup” instead of “max.” For all of 
the membership functions (MFs) considered in this paper, the sup and max are 
the same. 

4 For an explanation of why these equations are valid for both Mamdani 
and TSK fuzzy systems, see Section II in the SM. 

 
 Fig. 1. T1 FN used in this paper.  
 

  
(a) (b) 

Fig. 2. Examples of the max-min calculation (cardinal figure); 
 xi

∗  (filled-in 

cardinal circle) occurs to the (a) left of 
 ′xi  and (b) right of 

 ′xi . 
 
the value of  xi  at which the maximum occurs in (1) (or, in 
each of the two lines of (2)). 

Examples of max-min calculations between two T1 FSs are 
depicted in Fig. 2, and are included to remind the reader of the 
geometry of these calculations. Going down (up) an incline, 

  xi
*  lags (leads)  ′x . Formulas for   xi

*  are given in Table SM-1 
of the SM for both the minimum and product t-norms. 

Definition 15: In a fuzzy system, a firing level (interval) is 
said to contribute to its output only if it is non-zero. In a NS 
T1 (T1 NS IT2) fuzzy system, this occurs when   (i = 1,..., p)  

   
max xi∈Xi

µXi
(xi | ′xi )!µ

Fi
l (xi )  

    
max xi∈Xi

µXi
(xi | ′xi )!µ !Fi

l (xi )( )  
is 

simultaneously non-zero for all p antecedents6. 

C. Rule Partitions in a Singleton (S) Fuzzy System 
 [1, Sec. III] explains that in a S T1 or S IT2 fuzzy system, 

when a firing level (interval) is computed using either the 
minimum or product t-norms, then its non-zero occurrence 
over 

   
X1 × X2 ×!× X p  can be established by examining the 

components of the firing level (interval) separately over each 

 Xi  and then combining those results for all   i = 1,..., p , by 
using either the minimum or product t-norms. 

Definition 2: [1] In a7 T1 (IT2) fuzzy system, a T1 (IT2) 
first-order rule partition of  Xi  is a collection of non-

overlapping intervals in  Xi , in each of which the same 
number of same rules is fired whose firing levels (intervals) 
contribute to the output of that system. 

Definition 3: [1] In a S T1 (S IT2) fuzzy system, a T1 (IT2) 
second-order rule partition [line] of  Xi  occurs [where] the 

 
5 This is a generalization of Def. 7 in [1] from S to NS fuzzy systems. 
6 If the UMF is zero then the LMF must also be zero because a LMF can 

never be larger than the UMF. 
7 The prefix “S” is omitted here because, importantly, this definition does 

not depend upon the nature of the fuzzifier.  

 ′xi

 2δ

 T1 FN
 1

 0  xi

  
µXi

(xi | ′xi )

 ′xi

xi

  
µXi

(xi | ′xi )

  
µ

Fi
l (xi )

 xi
∗

xi
 ′xi

  
µXi

(xi | ′xi )

  
µ

Fi
l (xi )

 xi
∗
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[slope8 of the] MF (LMF or UMF) of a T1 (IT2) fuzzy set that 
is associated with  xi  changes its mathematical formula within 

a T1 (IT2) first-order rule partition of  Xi . 
Definition 4: [2] Points at which the MF (LMF or UMF) 

change their mathematical formula (slope) are called MF 
kinks. In this paper, to keep things relatively simple, it is 
assumed that such kinks only occur when a membership grade 
is unity or zero. 

Rule partitions sculpt the state space into hyper-rectangles 
within each of which resides a different nonlinear function 
(which is why a rule-based fuzzy system is a variable-
structure system). First-order rule partitions provide a course 
sculpting whereas second-order rule partitions provide a fine 
sculpting. To remind the reader, [1] shows that:  

“… a S T1 fuzzy system can sculpt its state space with greater variability 
than a crisp rule-based system can, and in ways that cannot be 
accomplished by the crisp system, and a S IT2 fuzzy system (that has the 
same number of rules as the S T1 fuzzy system) can sculpt the state space 
with even greater variability, and in ways that can not be accomplished by 
a S T1 fuzzy system” (and the latter can occur even when S T1 and S IT2 
fuzzy systems are described by the same number of parameters). 
Many examples of first- and second-order rule partitions for 

S T1 and S IT2 fuzzy systems are in [1] and its SM9. 

III. RULE PARTITIONS FOR NS FUZZY SYSTEMS 
This section defines and illustrates first-and second-order 

rule partitions for NS fuzzy systems because they will help us 
to further understand what is happening in a fuzzy system as 
one goes from S to NS fuzzification. 

A. First-Order Rule Partitions in a NS Fuzzy System 

1) First-Order Rule Partitions for Each  Xi : 
Def. 2 is valid for both S and NS fuzzy systems.  
Definition 5: In a NS T1 (T1 NS IT2) fuzzy system, a first 

encounter (Fig. 3a) between a T1 FN and an upward-sloping 
MF (UMF or LMF) occurs along the   xi -axis  when  ′xi ∈Xi  is 

 δ -units  to the left of where the leading edge of the T1 FN first 
meets the upward-sloping MF (UMF or LMF), which is at a 
MF kink. It is just to the right of a first encounter that (1) ((2)) 
is non-zero for the first time. 

Definition 6: In a NS T1 (T1 NS IT2) fuzzy system, a last 
encounter (Fig. 3b) between a T1 FN and a downward-sloping 
MF (UMF or LMF) occurs along the   xi -axis  when  ′xi ∈Xi  is 

 δ -units  to the right of where the lagging edge of the T1 FN 
last meets the downward-sloping MF (UMF or LMF), which 
is also at a MF kink. It is just to the left of a last encounter that 
(1) ((2)) is non-zero for the last time. 

Definitions 5 and 6 lead to the following mnemonics: 
upward-sloping-left, USL, and downward-sloping-right, DSR. 

 
8 Usually, when the MF (FOU) of a T1 (IT2) fuzzy set that is associated 

with 
 xi  changes its mathematical formula, the slope (derivative) of the MF 

(LMF or UMF) changes. Using “slope of the” accommodates, e.g., a Gaussian 
MF whose formula does not change, but whose slope changes at its center of 
gravity.   

9 For the convenience of the reader, Section IV of the SM to the present 
paper contains six tables from [1] that provide notations used in first- and 
second-order rule partitions as well as procedures for establishing them. 

  
(a) (b) 

Fig. 3. A (a) first encounter and (b) last encounter. 
 

TABLE I 
THREE-STEP PROCEDURE FOR ESTABLISHING T1 (IT2) FIRST-ORDER RULE 

PARTITION QUANTITIES FOR  Xi , IN A NS T1 (T1 NS IT2) FUZZY SYSTEM 
 

Step Description 
1 Start with a first-order rule partition diagram for the S T1 (IT2) 

fuzzy system (see Table SM-III in the SM) 
2 Insert (green)  2δ -bands centered at appropriate locations for 

first-order rule partition lines (Def. 7) on the 
 xi  axis.  

3 Shift the first-order partition lines to the mid-points of their 
respective  2δ -bands.  Do not do this for the dashed vertical lines 
from Step 1 that occur at the start and enda of   Xi .  The shifted 
lines are the first-order rule partitions for the NS T1 (T1 NS IT2) 
fuzzy system 

a If they were moved they would fall outside of   Xi ,  which is not permissible. 

 
Definition 7: Appropriate locations for T1 (IT2) first-order 

rule partition lines are on the   xi  axis,  and in a NS T1 (T1 NS 
IT2) fuzzy system they are found by locating all first 
encounters of upward-sloping MF (UMF) lines and all last 
encounters of downward-sloping MF (UMF) lines.  

Note that an UMF is always reached before a LMF is 
reached, and so UMFs play an exclusive role in establishing 
IT2 first-order rule partitions; however, as will be seen below, 
UMFs and LMFs both play important roles in establishing IT2 
second-order rule partitions. 

A formal three-step procedure for establishing first-order 
rule partition quantities in a NS fuzzy system for a single 
variable,  xi , is given in Table I. It is a continuation of the 
procedure for the respective S fuzzy system. 

Example 1: Consider   xi ∈[0,10]  covered by the three T1 
FSs depicted in Fig. 4a (Step 1 in Table I), for which there are 
three T1 rules whose antecedents are:   R

1 : IF x1  is L , 

  R
2 : IF x1  is M ,  and,   R

3 : IF x1  is H , and five T1 first-order 
rule partitions. The results for Steps 2 and 3 in Table I are 
shown on Figs. 4b and 4c for the 4% T1 FN and 12% T1 FN, 
respectively; these figures show the  2δ -bands  as well as the 
shifted partition lines (Steps 2 and 3), which occur at the 
appropriate locations   xi = a −δ ,  b+δ ,  c −δ  and  d +δ . 

Comparing Figs. 4a, b and c, observe that: (1) the widths of 
the one fired-rule T1 first-order rule partitions (1, 3 and 5) are 
smaller for NS fuzzification than for S fuzzification; (2) the 
widths of the two fired-rule T1 first-order rule partitions (2 
and 4) are larger for NS fuzzification than for S fuzzification; 
and (3) as the T1 FN goes from 4% to 12%, the widths of the 
T1 one-rule partitions get smaller and smaller, whereas the 
widths of the T1 two-rule partitions get larger and larger. This 
example reveals that in a NS T1 fuzzy system, uncertainties  

 

 0

 1

 a  b  xi

 ′xi = a −δ
 0

 1

 a  b  xi

 ′xi = b+δ
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(a) S T1 

 
(b) NS T1 (4% T1 FN) 

 
(c) NS T1 (12% T1 FN) 

Fig. 4. Example 1 figures; numbers above MFs denote numerical names for 
the five T1 first-order rule partitions (denoted 

  
PT1

1 (kxi
| xi ) in [1] where 

  
kxi

= 1,...,5 ); see, also Table SM-II in the SM). 

 
about measurements, modeled by NS fuzzification, fires more 
rules more often. 

Example 2: Next, all of the T1 FSs in Example 1 and Fig. 4 
are replaced by the IT2 FSs in Fig. 5, whose FOUs were 
constructed so that the T1 MFs in Fig. 4 are blurred as follow: 

  a ∈[ ′a , ′e ] ,   b∈[ ′f , ′b ] ,   c ∈[ ′c , ′g ]  and   d ∈[ ′h , ′d ] . Fig. 5a is 
for Step 1 in Table I, whereas Figs. 5b,c are for the combined 
Steps 2 and 3 in that table. 

Comparing the results in Figs. 4 and 5, observe that: (1) 
widths of one fired-rule IT2 first-order rule partitions (1, 3 and 
5) are smaller than those of analogous T1 first-order rule 
partitions; and, (2) widths of two fired-rule IT2 first-order rule 
partitions (2 and 4) are larger than those of analogous T1 first-
order rule partitions. See, also, Example SM-1 in Section VI 
of the SM. 

Generally speaking: uncertainty from T1 NS fuzzification or 
antecedent MF uncertainty (modeled as an FOU), reduces 
sizes of fewer number of fired-rule first-order rule partitions 
and increases sizes of greater number of fired-rule first-order 
rule partitions. 

2) First-Order Rule Partitions for   X1 × X2 :  
Definition 8: In a NS T1 (T1 NS IT2) fuzzy system, a T1 

(IT2) first-order rule partition of   X1 × X2  is a collection of 

non-over-lapping rectangles (squares) of10   X1 × X2 , in each of 
which the same number of same rules is fired whose firing 
levels (intervals) contribute to the output of that system. 

This definition is unchanged from the one that is given for a 
S T1 fuzzy system in [1, Def. 10]. 

 
10 As in [1, footnote 9], if a rule has p antecedents, then   X1  and   X2  each 

denote the universe of discourse for any two of them. 

 
(a) S IT2 

 
(b) T1 NS IT2 (4% T1 FN) 

 
(c) T1 NS IT2 (12% T1 FN) 

Fig. 5. Example 2 figures; numbers above FOUs denote numerical names for 
the five IT2 first-order rule partitions (denoted 

  
PIT 2

1 (kxi
| xi ) in [1], where 

  
kxi

= 1,...,5) ; see, also Table SM-II in the SM).  

 
TABLE II 

FOUR-STEP PROCEDURE FOR ESTABLISHING T1 (IT2) FIRST-ORDER RULE 
PARTITION QUANTITIES FOR   X1 × X2  IN A NS T1 (T1 NS IT2) FUZZY SYSTEM 

 
Step Description 
1 Locate T1 (IT2) first-order rule partitions of   X1  (  X2 ) on the 

horizontal (vertical) axis, and establish the number of rules in each 
partition and also the total number of such partitions for   X1  (  X2 ) 

2 Extend all dashed T1 (IT2) first-order rule partitions (turning them 
into solid lines) so that they cover   X1 × X2 . The results from 
doing this will be a collection of rectangles (or squares) 

3 Compute the fixed number of rules fired in each T1 (IT2) first-
order rule partition using (4) for   p = 2  

4 Compute the total number of T1 (IT2) first-order rule partitions of 

  X1 × X2  using (3) for   p = 2  

 
On a drawing of the MFs (FOUs) of   x1  on the horizontal 

axis and MFs (FOUs) of   x2  on the vertical axis, a formal four-
step procedure for establishing T1 (IT2) first-order rule 
partitions of   X1 × X2  is given in11 Table II. In order to 
implement this procedure, one must first complete the Table I 
four-step procedure for establishing the T1 (IT2) first-order 
rule partitions for   X1  and   X2 . 

Example 3: This is an extension of Examples 1 and 2 from 
one to two variables in which   x1,x2 ∈[0,10]  and both 
variables are covered by three MFs (FOUs) that are depicted 
in Figs. 4a (5a) for which there are now nine rules, whose 

 
11 Table II is very similar to Table III in [1] (Table SM-IV in SM), but does 

not have the symbols that are in the latter (the definitions of which are in 
Table I in [1] or Table SM-II in SM). 

 a  b  c  d  10 0

 1  2  3  4  5
  
µWi

(xi )

xi

L H M 

 a  b  c  d  10 0

 1  2  3  4  5
  
µWi

(xi )

xi

 a −δ  b+δ  c −δ  d +δ

L H M 

 a −δ  b+δ  c −δ  d +δ
 a  b  c  d  10 0

 1  2  3  4  5

xi

  
µWi

(xi )

L H M 

xi ′a  ′b  ′c  ′d  10 0

 1  2  3  4  5

 ′e  ′f  ′g  ′h

   
µ !Wi

(xi )

  !L   !M   !H

 ′a −δ  ′b +δ  ′c −δ  ′d +δ

xi ′a  ′b  ′c  ′d  10 0

 1  2  3  4  5

 ′e  ′f  ′g  ′h

   
µ !Wi

(xi )

  !L   !M   !H

 ′a −δ  ′b +δ  ′c −δ  ′d +δ

xi ′a  ′b  ′c  ′d  10 0

 1  2  3  4  5

 ′e  ′f  ′g  ′h

   
µ !Wi

(xi )

  !L   !M   !H
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antecedents for the T1 rules are:   R
1  (R2 , R3) : IF x1  is L and x2  

  is L ( M , H ),    R
4  (R5, R6 ) : IF x1  is M  and   x2  is L ( M , H ),  and

  R
7  (R8, R9 ) :   IF x1  is H  and x2  is L ( M , H ) . For IT2 rules, 

replace   L,  M ,  H  by    !L,  !M ,  !H . Results for Steps 1-3 in Table 
II are shown in the six panels of Fig. 6.  

Observe from these six figures that: (1) total number of T1 
(IT2) first-order rule partitions12 on  [0,10]× [0,10]  is 25, 
regardless of the kind of fuzzification; (2) uncertainty from NS 
fuzzification reduces sizes of T1 (IT2) first-order rule 
partitions and increases sizes of T1 (IT2) two- and four-rule 
partitions; (3) uncertainty in going from T1 to IT2 FSs also 
reduces sizes of T1 (IT2) first-order rule partitions and 
increases sizes of T1 (IT2) two- and four-rule partitions; and, 
(4) combined uncertainties from both NS fuzzification and 
going from T1 to IT2 FSs always leads to largest reductions in 
sizes of one-rule T1 (IT2) first-order rule partitions and 
increases in sizes of two- and four-rule T1 (IT2) first-order 
rule partitions. 

NS fuzzification can be said to act as “handles” on the sides 
of the first-order rule partitions of a S fuzzy system, making 
the widths of such one (two and four) fired-rule partitions 
smaller (larger), further confirming that uncertainties about 
measurements, modeled by NS fuzzification, fires more rules 
more often. 

3) First-Order Rule Partitions for
   
X1 × X2 ×!× X p :  

Definition 9: [1] In a T1 (IT2) fuzzy system, a T1 (IT2) 
first-order rule partition of 

   
X1 × X2 ×!× X p  is a collection 

of non-overlapping hyper-rectangles (or squares) in
   X1 × X2  

  
×!× X p , in each of which the same number of same rules is 

fired whose firing levels (intervals) contribute to the output of 
a T1 (IT2) fuzzy system. 

This definition of a T1 (IT2) first-order rule partition of 

  X1 × X2 ×  
  
!× X p is the same for S and NS fuzzy systems. 

Although it is impractical (impossible) to use graphical 
techniques to establish T1 (IT2) first-order rule partitions for 

  p = 3    ( p ≥ 4) , it is still possible to compute their total 

number   (N*
1),  as well as the fixed number of rules that are 

fired in each hyper-rectangle   (N R ) , by using (6) and (7), 
respectively, from [1]. For the convenience of the reader, 
those equations are:  

                     
  
N*

1( X1, X2 ,..., X p ) = N*
1( Xi )i=1

p∏  (3) 

                     NR(kx1 ,kx2 ,...,kxp ) = NR(kxi )i=1

p∏  (4) 

Importantly, observe that both  N R  and   N*
1  are determined 

for   p ≥ 2  by first determining them for each variable, which is 
easy to do by means of the graphical techniques explained 
above. It is clear, from (3), that as p increases the total number 
of T1 (IT2) first-order rule partitions increases dramatically in 

 
12 In [1],   N*

1( X1, X2 )  denotes this count (see, also, Table SM-II in SM), 
where * = T1 (IT2) for a T1 (IT2) fuzzy system. 

  
(a) S T1 (b) S IT2 

  
(c) NS T1 (4% T1 FN) (d) T1 NS IT2 (4% T1 FN) 

  
(e) NS T1 (12% T1 FN) (f) T1 NS IT2 (12% T1 FN) 

Fig. 6. Example 3 figures for Table II’s Steps 1-3: The number in each 
rectangle is the number of rules that are fired in it13.  
 
both T1 and IT2 S and NS fuzzy systems. It is what goes on in 
each of those partitions that is different for S and NS fuzzy 
systems—more rules fire for more of the time in NS fuzzy 
systems. 

B. Second-Order Rule Partitions in a NS Fuzzy System 

1) Second-Order Rule Partitions for Each  Xi : 
For NS fuzzification, Def. 3 changes to: 
Definition 3NS: In a NS T1 (T1 NS IT2) fuzzy system, a T1 

(IT2) second-order rule partition line of  Xi  occurs where the 

location of the value of  xi  at which the maximum occurs in 

(1) ((2)) ( xi
∗ ) changes from one segment of an antecedent’s 

MF (UMF or LMF) to another segment [within a T1 (IT2) 
first-order rule partition of  Xi ], where the slope of the latter 
segment differs from the slope of the former segment. 

 
13 In [1] 

  
N R (kx1

,kx2
)  denotes this (see, also, Table SM-II in SM), where 

  
kx1

,kx2
= 1,...,5

 
begin in the lowest left-hand square and sweep upwards 

lexicographically from left to right. 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 7. Example 4 figures: six locations of a triangle T1 FN in relation to a 
downward-sloping portion of a left-shoulder MF. In each figure, the dark 
cardinal piecewise-linear function is the result of the min computation (in the 
max-min computation) between the T1 FN and the left-shoulder MF, and the 
cardinal filled-in dot is the result of the max computation. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 8. Relative location of T1 FN to (a) UMF and (b), (c), (d) LMF. 
 

Such a location is easy to visualize for minimum t-norm, but 
is more difficult to locate for product t-norm, and since the 
purpose of this paper is to develop a further explanation of 
what is happening for NS fuzzification in terms of sculpting 
the state space, here we only consider the minimum t-norm.  

Note that, for S fuzzification,   xi
* = ′xi , so that Def. 3NS 

becomes equivalent to Def. 3. 
Example 4: Fig. 7 depicts six locations of a triangle T1 FN 

in relation to the downward-sloping portion of a left-shoulder 
MF. Observe the flow of the max-min computation, which has 
to be performed over the entire domain of the T1 FN, as the 
triangle T1 FN moves from left to right.  

In Fig 7a, the T1 FN (shown at two locations) only 
intersects the shoulder when  xi = ′xi ; this continues until the 
T1 FN reaches the shoulder breakpoint (which is a MF kink at 
unity membership grade, that is then shown as a dotted 
second-order partition line in successive figures). In Figs. 7b 
and 7c the min computation leads to a three-sided cardinal 
figure, and the result of the max-min computation occurs at 
the upper left-hand vertex of that figure, which is on the 
downward-sloping portion of the MF. The projection of that 
result onto the  xi  axis would locate   xi

* . 
In Fig. 7d the leading edge of the T1 FN intersects the 

downward-sloping portion of the left shoulder MF at zero 
membership grade (a MF kink), so that the result of the min 
computation is a triangle; however, the result of the max-min 
computation is still on the downward-sloping portion of the 

MF.  
In Fig. 7e, when the T1 FN moves to the right of its location 

in Fig. 7d, the result of the max-min computation is still on the 
downward-sloping portion of the MF. 

Finally, in Fig. 7f, when the top of the left leg of the T1 FN 
reaches the right-hand boundary of T1 first-order rule Partition 
#2 (the second red dashed line), the result of the max-min 
computation is zero, and that ends the analysis of the max-min 
composition of the triangle T1 FN with the left shoulder MF. 
Example 5 below continues this example.  

The results from this example are summarized in:  
Definition 10: Appropriate locations for T1 second-order 

rule partition lines in a NS T1 fuzzy system (that uses a 
triangle T1 FN) are on the  xi  axis, and are found by locating 
where a MF has a MF kink (Def. 4) at unity membership 
grade. 

Note that the MF kinks that occur at zero membership grade 
have already been accounted for during the construction of the 
first-order rule partitions, and are therefore not involved in 
determining second-order rule partition lines. 

Focusing next on a T1 NS IT2 fuzzy system, recall, from 
(2), that in such a fuzzy system it is the interaction of the T1 
FN with both the LMF and the UMF of an antecedent’s FOU 
that contributes to the two max-star computations. 
Consequently, one has: 

Definition 11: Appropriate locations for IT2 second-order 
rule partition lines in a T1 NS IT2 fuzzy system (that uses a 
triangle T1 FN) are on the   xi  axis  and are found by locating 
(a) where an UMF or a LMF has a MF kink (Def. 4) at unity 
membership grade (Figs. 8a, b, d), and (b) where all last 
encounters (Def. 6) of downward-sloping LMF lines occur 
(Fig. 8c) and all first encounters (Def. 5) of upward-sloping 
LMF lines (Fig. 8d), at zero membership grade. 

Item (a) should be obvious, from, e.g. Figs. 8a,b, for which 
an IT2 second-order rule partition line occurs at the MF kinks 

 xi = c  and  xi = a , respectively, and Fig. 8d, for which an IT2 

second-order rule partition lines occur at the MF kinks  xi = g  

and  xi = h . Note that if the FOU is a triangle such that the 
LMF and UMF meet at the same point when the membership 
grade is unity, then there will only be one IT2 second-order 
rule partition line at that common point.   

Item (b) needs explanation. First, note that the MF kinks 
that occur at a zero membership grade for the UMF have 
already been accounted for during the construction of the IT2 
first-order rule partitions, and are therefore not involved in 
determining IT2 second-order rule partition lines.  

Next, from Figs. 8b and c, it should be clear that (analogous 
to the results in Fig. 7) for   xi ∈[a,b+δ ]  the result of the max-
min computation is on the downward-sloping portion of the 
LMF, and, from Fig. 8c, that for  xi ≥ b+δ  the result of the 
max-min computation is zero. However, as long as the UMF is 
not zero, the firing interval still contributes to the output, 
which is why the IT2 second-order rule partition line at the 

 2 1

 ′xi

xi

 2 1

 ′xi

xi
 ′xi

 2 1

xi

 ′xi

 2 1

xi
 ′xi

 2 1

xi
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 2 1
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LMF kink has to be shifted from b to  b+δ  (Fig. 8c). It is only 
for  xi ≥ d +δ  that the firing interval for the shoulder FOU no 
longer contributes to the output of the IT2 fuzzy system, but 

 xi = d +δ  has already contributed an IT2 first-order rule 
partition line, so no new line is needed. 

A discussion similar to the one just given for Fig. 8c can 
also be given for Fig. 8d, to explain why an IT2 second-order 
rule partition line occurs at  xi = f −δ , and is left to the 
reader. 

 A formal four-step procedure for establishing T1 (IT2) 
second-order rule partition quantities for a single variable,  xi , 
in a NS T1 (T1 NS IT2) fuzzy system, begins with a drawing 
of the respective T1 (IT2) first-order rule partitions, and is 
given in Table III. It is the extension of [12, Table V] from S 
to NS (see, also, Table SM-VI in SM). 

Example 5: This is a continuation of Example 1. The results 
for Table III’s Steps 1–3 are shown in Figs. 9b and 9c for 4% 
and 12%T1 FNs, respectively. Observe that: (1) the fuzzy 
systems in (a) and (b) have the same total number of seven T1 
second-order rule partitions, although the sizes of some of 
those partitions are different for the two fuzzy systems; and, 
(2) the fuzzy system in (c) has eight T1 second-order rule 
partitions, which demonstrates that NS fuzzification can 
increase the number of second-order rule partitions. 

Example 6: This is a continuation of Example 2. The results 
for Table III’s Steps 1–3 are shown in Figs. 10b,c. Observe 
that the: (1) fuzzy systems in (a) and (b) have the same total 
number of 12 IT2 second-order rule partitions, although the 
sizes of some of those partitions are different for the different 
fuzzy systems; and, (2) the fuzzy system in (c) has 11 IT2 
second-order rule partitions, which demonstrates that NS 
fuzzification can also decrease the number of second-order 
rule partitions. See, also, Example SM-2 (Section VI of the 
SM) in which NS fuzzification does not change the number of 
IT2 second-order rule partitions. 

Unlike our Section III–A definitive conclusions about the 
increase or decrease of the sizes of T1 (IT2) first-order rule 
partitions due to NS fuzzification, no such definitive 
conclusions can be drawn about the increase or decrease of the 
total number of T1 (IT2) second-order rule partitions due to 
NS fuzzification. This is also quite different from the 
definitive conclusions in [1] about the almost always increase 
(but no decrease) of the number of T1 (IT2) second-order rule 
partitions as one goes from a S T1 to a S IT2 fuzzy system, 
and is one demonstration of measurement uncertainty modeled 
as a T1 FN being quite different from antecedent MF 
uncertainty being modeled as an IT2 FS.  

2) Second-Order Rule Partitions for   X1 × X2 : 
 The following definition is the extension of Def. 3NS from 

 Xi  to   X1 × X2  (see footnote 10).  
Definition 12: In a NS T1 (T1 NS IT2) fuzzy system, a T1 

(IT2) second-order rule partition line of   X1 × X2  occurs 

where the location of the value of either   x1  or   x2  at which the  

TABLE III 
FOUR-STEP PROCEDURE FOR ESTABLISHING T1 (IT2) SECOND-ORDER RULE 

PARTITION QUANTITIES FOR  Xi , IN A NS T1 (T1 NS IT2) FUZZY SYSTEM, ON 

A DRAWING OF ITS RESPECTIVE FIRST-ORDER RULE PARTITIONS 
 

Step Description 
1 Scan the axis of xi  and insert a dotted vertical line at all 

appropriate locations for second-order rule partitions (Definitions 
10 or 11). If any of these dotted lines occurs at a boundary of a T1 
(IT2) first-order rule partition, then do not draw such a vertical 
dotted line. 

2 The interval of real numbers between adjacent dotted vertical lines 
or between a dotted line and a dashed (or dashed and dotted) line 
is its T1 (IT2) second-order rule partition. 

3 Each T1 (IT2) first-order rule partition has from zero to a finite 
number of T1 (IT2) second-order rule partitions. Count them. 

4 Count the total number of T1 (IT2) second-order rule partitions, 
the total being   NT1

2 ( Xi )   (N IT 2
2 ( Xi )) . 

 

 
(a) S T1: 7 T1 second-order rule partitions 

 
(b) NS T1 (4%T1 FN): 7 T1 second-order rule partitions 

 
(c) NS T1 (12%T1 FN): 8 T1 second-order rule partitions 

Fig. 9. Example 5 figures: circled numbers denote the number of T1 second-
order rule partitions in a respective T1 first-order rule partition (denoted 

  
NT1

2 (kxi
| xi ) in [1] where 

  
kxi

= 1,...,5 ; see, also Table SM-V in SM). 

maximum occurs in (1) ((2)) (  x1
∗  or   x2

∗ ) changes from one 
segment of an antecedent’s MF (UMF or LMF) to another 
segment [within a T1 (IT2) first-order rule partition of  Xi ], 
where the slope of the latter segment differs from the slope of 
the former segment.14. 

A formal four-step procedure for establishing T1 (IT2) 
second-order rule partitions of   X1 × X2  and related quantities 
begins with a drawing of the T1 (IT2) first-order rule 
partitions and proceeds exactly as in [1, Table VI] (see, also, 
Table SM-VII in SM). 

Example 7: This is a continuation of Example 3. The results 
of Steps 1–3 of Table SM-VII are shown in the six parts of 
Fig. 11. In each first-order rule partition there are two numbers 
that are separated by a colon: the first is 	  N R(kx1

,kx2
)  and the  

 
14 In general, the T1 FNs for   x1 and   x2  can be different. 
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(a) S IT2: 12 IT2 second-order rule partitions 

 
(b) T1 NS IT2 (4% T1 FN): 12 IT2 second-order rule partitions 

 
(c) T1 NS IT2 (12%T1 FN): 11 IT2 second-order rule partitions 

Fig. 10. Example 6 figures: circled numbers denote the number of IT2 second-
order rule partitions in a respective IT2 first-order rule partition (denoted 

  
N IT 2

2 (kxi
| xi ) in [11] where 

  
kxi

= 1,...,5 ; see, also Table SM-V in SM). 
 

second is 	  N*(kx1
,kx2

) , e.g. 2:3 indicates that two rules are 

fired in the first-order rule partition and there are three second-
order rule partitions in that first-order rule partition. 

By adding all of the numbers that appear to the right of the 
colons in each of the Fig. 11 figures, one obtains the total 
numbers of second-order rule partitions that are stated in the 
captions to those figures. Observe that the partitions for the 
4% T1 FN are somewhat different from those for S 
fuzzification (although it may be difficult to discern 
differences between Figs. 11a and c, and Figs. 11b and d, due 
to their reduced sizes, they are different, as can be more 
readily observed when Figs. 9a and b are compared, and when 
Figs. 10a and b are compared); however, the partitions for the 
12% T1 FN are very different.   

Example 8: Fig. 12 depicts control surfaces for the six fuzzy 
systems in Fig. 11; they used max-min inference (control 
surfaces that use max-product inference are in Section VIII of 
the SM), center-of-sets (COS) defuzzification for the T1 fuzzy 
systems and COS type-reduction (TR) for the IT2 fuzzy 
systems, Numerical information about the nine rules and their 
consequents are given in Section VIII in the SM. From the 
control surfaces, observe that: 

1. When one compares each T1 control surface in the left-
hand column with its respective IT2 control surface in 
the right-hand column, it is clear that the combination of 
NS fuzzification and IT2 FSs leads to smoother control 
surfaces, which means a better interpolation of fired 
rules, i.e. a small change in an input results in a smaller 
change in the output and hence to better performance.   

2. The flat plateaus occur in the nine first-order rule 
partitions in which only one rule fires and are due to 
COS defuzzification or COS TR, for which the control 
output is always a constant; for the T1 fuzzy system this  

  
(a) S T1: 77 T1 partitions (b) S IT2: 167 IT2 partitions 

  
(c) NS T1 (4% T1 FN): 77 

T1 partitions 
(d) T1 NS IT2 (4%T1 FN): 

167 IT2 partitions 

 
 

(e) NS T1 (12%T1 FN): 
80 T1 partitions 

(f) T1 NS IT2 (12%T1 FN): 
165 IT2 partitions 

Fig. 11. Example 7 figures. Each figure is the T1 (IT2) second-order rule 
partition diagram for its corresponding figure that is in Fig. 6. In the captions 
to each figure, “partitions” is short for “second-order rule partitions”. 
 

equals the COG of the consequent FS, and for the IT2 
fuzzy system this equals the average of the left and right 
end-points of the centroid of the consequent IT2 FS. 

3) Second-Order Rule Partitions for
   
X1 × X2 ×!× X p :  

Definition 13: In a NS T1 (T1 NS IT2) fuzzy system, a T1 
(IT2) second-order rule partition line of 

   
X1 × X2 ×!× X p  

occurs where the location of the value of either   x1  or   x2  or 

… or 
 
xp  at which the maximum occurs in (1) ((2)) (  x1

∗  or  

  x2
∗ … or 

 
xp
∗ ) changes from one segment of an antecedent’s 

MF (UMF or LMF) to another segment [within a T1 (IT2) 
first-order rule partition of  Xi ], where the slope of the latter 
segment differs from the slope of the former segment. 

A formula for the total number of T1 (IT2) second-order 
rule partitions of  Xi ,  N*

2( Xi ) , is: 

                       
  
N*

2( Xi ) = N*
2(ki | xi )ki=1

N*
1( Xi )∑  (5) 
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(a) S T1 (b) S IT2 

  
(c) NS T1 (4% T1 FN) (d) T1 NS IT2 (4%T1 FN) 

  
(e) NS T1 (12%T1 FN) (f) T1 NS IT2 (12%T1 FN) 

Fig. 12. Example 8 figures. Each figure is a T1 (IT2) control surface for its 
corresponding figure that is in Fig. 11. 
 

In (5),   N*
2(ki | xi )  [the total number T1 (IT2) second-order 

rule partitions within the  ki
th T1 (IT2) first-order rule partition 

of  Xi ] are obtained by counting (Table III, Step 3). A formula 
for the total number of T1 (IT2) second-order rule partitions of 

   
X1 × X2 ×!× X p ,

   
N*

2( X1,…, X p ) , is: 

              

   

N*
2( X1,…, X p ) = [N*

2( X j )+ Z( X j )]j=1

p∏
                                   − Z( X j )j=1

p∏
  (6)   

                           
   
Z( X j ) = ξ(k j | x j )k j=1

N*
1( X j )∑  (7) 

                    

  

ξ(k j | x j ) =
0 if  N*

2(k j | x j ) ≠ 0 

1 if  N*
2(k j | x j ) = 0

⎧
⎨
⎪

⎩⎪
 (8) 

Note that (6) is analogous to (13) in [1] and that the 
explanation and reason that are given for the appearance of

 
  
Z( X j )  in [1, Eq. (13)] are the same for why 

  
Z( X j )  appears 

in our (6) (see, also, Section V in the SM). 
 

  
(a) S T1 fuzzy system (b) S IT2 fuzzy system 

Fig. 13. (a), (b) First and second-order rule partitions of   X1 × X2  for Example 
5 in [1]. Regarding a:b, a denotes the number of same rules fired in the T1 
(IT2) first-order rule partition, and b denotes the number of T1 (IT2) second-
order rule partitions within that T1 (IT2) first-order rule partition (count 
them). 
 

  
(a) (b) 

Fig. 14. (a) T1 first- and second-order rule partitions of   X1  for the Fig. 13a 

example, and for the 12% T1 FN;  ZL  ( ZR ) denotes left (right) segment of Z; 

(b) blowup of Partition 3 for   ′x1 ∈[0,x13] in which the three filled-in red circles 
demonstrate a non-zero value for the max-min computation between 

  
µX1

(x1 | ′x1)  and   µN (x1) , 
  
µZR

(x1)  and   µP (x1) , indicating three rules fire 

when   ′x1 ∈[0,x13] . 

IV. A NEW PHENOMENON: RULE CROSSOVER 
Fig. 13 is taken from Example 5 in [1], for which the S T1 

fuzzy system has no T1 second-order rule partitions whereas 
the S IT2 fuzzy system has 36 of them. Consequently, it is 
stated [1]:  

 “… although the T1 and IT2 fuzzy systems have exactly the same 
number of first-order rule partitions (four) … there is no further sculpting 
of the T1 fuzzy system, whereas there is much further sculpting of the IT2 
fuzzy system.”  
Instead of immediately presenting the NS versions of Figs. 

13a,b, we return first to the T1 first-and second-order partition 
diagram just for   x1  in the NS situation (the diagram for   x2 is 
exactly the same); it is obtained from Table I and is depicted 
in Fig. 14a for the 12% T1 FN (similar results hold for the 4% 
T1 FN). This figure needs some explaining.  

Observe there are four T1 first-order rule partitions, 1–4. 
One might argue that there should only be two such partitions, 
obtained by stretching   x1 = 0  (the right-end boundary of the 
T1 partition   [−a,0]  for the S T1 fuzzy system) to the right 

until it reaches   x1 = x13 , and by also stretching   x1 = 0  (also the 
left-end boundary of the T1 partition   [0,a]  for the S T1 fuzzy 

system) to the left until it reaches   x1 = x12 ; but, this is 
incorrect, because doing both of these would lead to two 
overlapping regions where the overlap is   [x11,x12] , which 

x2

x1
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would mean that   x1 ∈[x11,x12]  would exist simultaneously in 
two T1 first-order rule partitions, something that violates the 
meaning of a mathematical partition.  

To understand this better, one can examine what the 
antecedents of the two fired-rules are in each of the four T1 
first-order rule partitions. From the MFs in Fig. 14a [see, also 
Fig. 14b for line 3 of (9)], one obtains:  

      

  

x1 ∈[−a,x12] : {IF x1  is N , IF x1  is ZL}

x1 ∈[x12 ,0] : {IF x1  is N , IF x1  is ZL ,  IF x1  is P}

x1 ∈[0,x13] : {IF x1  is N , IF x1  is ZR ,  IF x1  is P}

x1 ∈[x13,a] : {IF x1  is P, IF x1  is ZR}

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (9)   

Observe that (9) demonstrates that different combinations of 
rules are fired in   x1 ∈[x12 ,0]  and   x1 ∈[0,x13] , and so they are 
indeed legitimate T1 first-order rule partitions. 

Amazingly, NS fuzzification leads to two rules [  IF x1  is P  

in line 2 (compare lines 1 and 2 in (9)) and   IF x1  is N  in line 3 
(compare lines 3 and 4 in (9))]—crossover rules—that can 
never occur in a S fuzzy system, and it is partition theory that 
has revealed this.  

The NS versions of the two figures in Fig. 13 are in Fig. 15. 
Observe that, whereas the S T1 fuzzy system in Fig. 13a has 
four T1 first-order rule partitions and no T1 second-order rule 
partitions, the NS T1 fuzzy system in Fig. 15a has 16 T1 first-
order rule partitions but still no T1 second-order rule 
partitions. This demonstrates a new phenomenon for a T1 
fuzzy system, that NS fuzzification can increase the number of 
its T1 first-order rule partitions.  

Observe, also that, whereas the S IT2 fuzzy system in Fig. 
13b has four IT2 first-order rule partitions and 36 IT2 second-
order rule partitions, the T1 NS IT2 fuzzy system in Fig. 15b 
has 16 IT2 first-order rule partitions and 60 IT2 second-order 
rule partitions. This demonstrates a new phenomenon for an 
IT2 fuzzy system, that NS fuzzification can simultaneously 
increase the numbers of both its IT2 first-order and second-
order rule partitions. See, also Example SM-3 in Section VII 
of the SM.  

Example 9: This example is a continuation of Examples 1, 5 
7, and 8, for a T1 fuzzy system, and Examples 2, 6, 7 and 8 for 
an IT2 fuzzy system, to the case of a 24% T1 FN. 
Interestingly, no rule-crossover occurs for the T1 fuzzy system 
(Fig. 16a), but it does occur for the IT2 fuzzy system (observe, 
e.g., in Fig. 16b, that  ′b +δ > ′c −δ ). In this example, rule-
crossover reduces the number of first (second)-order rule 
partitions from five (11 in Fig. 10c) to four (10). Although the 
size of the first-order rule partition #2 (e.g., in Fig. 16b), due 
to crossover is small, it would be larger if the support of the 
T1 FN was larger than 24%. Finally, observe that the control 
surfaces for the 24% T1 FN, in Figs. 16g and h are noticeably 
different from the ones for 12% T1 FM, in Fig. 12e and f. 

The two examples in this section suggest that more research 
is needed about how to overlap MFs (FOUs) so as to obtained 
increased or decreased numbers of first (second)-order rule  
 

 
(a) 

 
(b) 

Fig. 15. (a), (b) 12% T1 FN NS versions of Figs. 13a and b, respectively. 
 
partitions, as well as whether or not rule crossover is good or 
bad. 

V. WHICH RULES FIRE? 
In a S T1 (IT2) fuzzy system it is straightforward to 

enumerate which rules fire in a specific first-order rule 
partition, by examining which MFs (FOUs) are intersected by 
a vertical line drawn at  x = ′x . Because this is so easy to do, 
and no ambiguities can occur, no big deal was made about 
doing it in [1] or [2]. Unfortunately, the same is not true in a 
NS T1 (IT2) fuzzy system, because it is no longer a vertical 
line at  x = ′x  that establishes which rules are fired in a 
specific T1 (IT2) first-order rule partition. Instead, it is a T1 
FN that is located about  x = ′x  that does this. An illustration 
of this has been given in (9) for the T1 FSs in Fig. 14. 

If one is actually interested to know which rules fire in a 
specific T1 (IT2) first-order rule partition for a NS T1 (T1 NS 
IT2) fuzzy system, one must provide this as additional 
information for each such partition. We have chosen not to do 
this for our examples because the purpose of this paper is to 
better understand the performance potential of a NS fuzzy 
system over a S fuzzy system, and one does not need to know  
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(a) Five first-order rule partitions (b) Four first-order rule partitions 

  
(c) Five second-order rule partitions (d) Ten second-order rule partitions 

 
(e) 25 first-order and 55 second-order rule partitions 

 
(f) 16 first-order and 140 IT2 second-order rule partitions 

  
(g) NS T1 control surface (h) T1 NS IT2 control surface 

Fig. 16. Example 9, 24% T1 FN NS T1 [(a), (c), (e), (g)] and T1 NS IT2 [(b), 
(d), (f), (h)] rule partition figures. 

 
which rules fire in a specific T1 (IT2) first-order rule partition 
in order to accomplish this. 

VI. CONCLUSIONS AND FUTURE RESEARCH 
The purpose of this paper has been to better understand the 

performance potential of a NS fuzzy system over a S fuzzy 
system. The approach to doing this has been to extend [1] 
from S to NS fuzzification15. The paper’s main conclusions 
are: uncertainties about measurements, modeled by NS 
fuzzification:  

(1) Fire more rules more often (regardless of the nature of 
the fuzzy system), manifested by a reduction in the sizes 
of T1 and IT2 first-order rule partitions for those 
partitions associated with the firing of a smaller number 
of rules, and an increase in the sizes of T1 and IT2 first-
order rule partitions for those partitions associated with 
the firing of a larger number of rules—the coarse 
sculpting of the state space. 

(2) May lead to an increase or decrease in the number of T1 
and IT2 first-order rule partitions, and to some partitions 
that contain rule combinations that can never occur for S 
fuzzification—a new rule crossover phenomenon—
discovered by using partition theory.  

(3) May lead to a decrease, the same number, or an increase 
in the number of T1 and IT2 second-order rule 
partitions—the fine sculpting of the state space—all of 
which are very system dependent.  

(4) Lead to better control surfaces with smoother transitions 
between the various areas of the control surface, i.e, a 
small change in the input results in smaller changes in 
the output and hence to better system performance. 

The author’s conjecture that: It is the additional control of 
the coarse sculpting of the state space, accomplished by 
prefiltering and the max-min (or max-product) composition, 
that provides a NS T1 or IT2 fuzzy system with the potential to 
outperform a S T1 or IT2 fuzzy system, when measurements 
are uncertain. 

Some open research questions and extensions to this paper 
are: 

1) Prove the just-stated conjecture using the framework of 
rule partitions for NS T1 (IT2) fuzzy systems. 

2) Extend the paper’s results to other kinds of FNs, e.g., 
trapezoidal.  

3) Extend the paper’s results to NS general T2 fuzzy 
systems. 

4) Develop new geometric design methods that are based 
on first- and second-order rule partitions (e.g., analyze 
where in the state space largest errors occur and then 
alter MF (FOU) shapes in those regions so that more first 
and/or second-order rule partitions occur in them). 

5) Establish a methodology for overlapping MFs (FOUs) so 
as to obtain and establish if rule crossover is good or 
bad.  

6) Study whether or not NS fuzzification can improve the 
performance of a fuzzy logic controller (e.g., fuzzy 
proportional-integral-derivative—FPID—controller) by 
virtue of its new rule crossover phenomenon. 

 
15 An on-line site has been developed that lets the reader replicate the 
examples of this paper as well as apply the theory to other examples of two-
input one output fuzzy systems. It is: http://fuzzypartitions.com/ 
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7) Extend the paper’s results to similarity-based inference 
engines for NS fuzzification ([30], [33]–[37]) 

ACKNOWLEDGEMENT 
The authors would like to thank the reviewers of this paper 

for their insightful comments and suggestions. 

REFERENCES 
[1] J. M. Mendel, “Explaining the performance potential of rule-based fuzzy 

systems as a greater sculpting of the state space,” IEEE Trans. on Fuzzy 
Systems, vol. 26, pp. 2362–2373, August 2018. 

[2] J. M. Mendel, “Comparing the performance potentials of interval and 
general type-2 rule-based fuzzy systems in terms of sculpting the state 
space,” IEEE Trans. on Fuzzy Systems, vol. 27, pp. 58–71, Jan. 2019.  

[3] G. C. Mouzouris and J. M. Mendel, “Non-singleton fuzzy logic 
systems,” in Proc. of Third IEEE Conference on Fuzzy Systems, 
Orlando, FL, June 1994, pp. 456–461. 

[4] G. C. Mouzouris and J. M. Mendel, “Nonlinear time-series analysis with 
non-singleton fuzzy logic systems,” in Proc. of IEEE/IAFE 1995 
Conference on Computational Intelligence for Financial Engineering 
(CIFEr), April 1995, New York City, NY. 

[5] G. C. Mouzouris and J. M. Mendel, “Nonlinear predictive modeling 
using dynamic non-singleton fuzzy logic systems,” Proc. of 1996 IEEE 
Conf. on Fuzzy Systems, New Orleans, LA, Sept. 8-10. 

[6] G. C. Mouzouris and J. M. Mendel, “Non-singleton fuzzy logic systems: 
theory and application,” IEEE Trans. Fuzzy Syst., vol. 5, no. 1, pp. 56–
71, 1997a. 

[7] G. C. Mouzouris and J. M. Mendel, Dynamic non-singleton fuzzy logic 
systems for nonlinear modeling, IEEE Trans. on Fuzzy Systems, vol. 5, 
no. 2, pp. 199–208, May 1997b.  

[8] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: 
theory and design,” IEEE Trans. on Fuzzy Systems, vol. 8, no. 5, pp. 
535–550, October, 2000. 

[9] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction 
and New Directions, Prentice-Hall, Upper Saddleback River, NJ, 2001. 

[10] J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and 
New Directions, Second Ed., Springer, Cham, Switzerland, 2017. 

[11] Z. H. Akpolat, “Non-singleton fuzzy logic control of a DC motor,” J, of 
Applied Sciences, vol. 5, pp. 887-891, 2005. 

[12] A. Simon and G. T. Flowers, “Disturbance attenuation using non-
singleton fuzzy logic,” in Proc. of ASME 2005 Intl. Design Engineering 
Tech. Confs. and Computers and Information in Engineering Conf., 
Vol.1: 20th Biennial Conf. on Mechanical Vibration and Noise, Parts A, 
B, and C, Long Beach, CA,  Sept. 2005, pp. 97–106. 

[13] R. K. Nowicki and J. T. Staarczewski, “On non-singleton fuzzification 
with DCOG defuzzification,” in: Rutkowski L., Scherer R., 
Tadeusiewicz R., Zadeh L. A., Zurada J.M. (eds.) Artificial 
Intelligence and Soft Computing, ICAISC 2010, Lecture Notes in 
Computer Science, vol. 6113, pp. 168–174, Springer, Berlin, 
Heidelberg, 2010. 

[14] G. M. Mendez and M.A. Hernandez, “Interval type-1 non-singleton 
type-2 fuzzy logic systems are type-2 adaptive neuro-fuzzy inference 
systems,” Int. J. of Reasoning-based Intell. Syst., vol. 2, pp. 95-99, 2010.  

[15] A. B. Cara, I. Rojas, H. Pomares, C. Wagner, and H. Hagras, “On 
comparing non-singleton type-1 and singleton type-2 fuzzy controllers 
for a nonlinear servo system,” in Proc. of IEEE Symposium on Advances 
in Type- 2 Fuzzy Logic Systems, 2011, pp. 126–133. 

[16] T. W. Chua and W. W. Tan, “Non-singleton genetic fuzzy logic system 
for arrhythmias classification,” Engineering Applications of Artificial 
Intelligence, vol. 24, pp.251-259, March 2011. 

[17] M. de los Angeles Hernandez, P. Melin, G. M. Mendez, O. Castillo and 
I. L.-Juarez, “A hybrid learning method composed by the orthogonal 
least-squares and the back-propagation learning algorithms for interval 
A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems,” Soft 
Computing, vol. 19, no. 3, pp. 661–678, 2015. 

[18] C. Fu, A. Sarabakha, E. Kayacan, C. Wagner, R. John and J. M. 
Garibaldi, “Input uncertainty sensitivity enhanced non-singleton fuzzy 
logic controllers for long-term navigation of quadrotor UAVs,” 
IEEE/ASME Trans. on Mechatronics, vol. 23, no. 2, pp. 725–734, April 

2018. 
[19] D. Hidalgo, P. Melin and J. R. Castro, “Non-singleton interval type-2 

fuzzy systems as integration methods in modular neural networks used 
genetic algorithms to design,” in: Melin, P., Castillo, O. and Kacprzyk, 
J. (eds.) Nature-Inspired Design of Hybrid Intelligent Systems, Studies 
in Computational Intelligence, vol. 667, pp. 821–838, Springer, 
Cham, 2017.  

[20] R. Martínez-Soto, O. Castillo, J. R. Castro, “Genetic algorithm 
optimization for type-2 non-singleton fuzzy logic controllers,” in: 
Castillo O., Melin P., Pedrycz W., Kacprzyk J. (eds.) Recent 
Advances on Hybrid Approaches for Designing Intelligent Systems, 
Studies in Computational Intelligence, vol. 547, pp. 3–18, Springer, 
Cham, 2014. 

[21] G. M. Mendez, O. Castillo, R. Colas and H. Moreno, “Finishing mill 
strip gage setup and control by interval type-1 non-singleton type-2 
fuzzy logic systems,” Applied Soft Computing, vol. 24, pp. 900-911, 
Nov. 2014. 

[22] G. M. Mendez and M. A. Hernandez, “Hybrid learning mechanism for 
interval A2-C1 type-2 non-singleton type-2 Takagi-Sugeno-Kang fuzzy 
logic system,” Information Sciences, vol. 220, pp. 149-169, 2013. 

[23] A. Pourabdollah, R. John and J. M. Garibaldi, “A new dynamic approach 
for non-singleton fuzzification in noisy time-series prediction,” in Proc. 
of FUZZ-IEEE 2017, Naples, Italy, July 2017. 

[24] A. Pourabdollah, C. Wagner, J. Aladi and J. Garibaldi, “Improved 
uncertainty capture for non-singleton fuzzy systems,” IEEE Transaction 
on Fuzzy Systems, vol. 24, no. 6, pp. 1513–1524, Dec. 2016. 

[25] A. Pourabdollah, C. Wagner, and J. Aladi, “Changes under the hood-a 
new type of non-singleton fuzzy logic system,” in Proc. of FUZZ-IEEE 
2015, pp. 1–8. [32]  

[26] G. Ruiz-Garcia, H. Pomares, I. Rojas and H. Hagras, “The non-singleton 
fuzzification operation for general forms of interval type-2 fuzzy logic 
systems,” in Proc. of FUZZ-IEEE 2017, Naples, Italy, July 2017. 

[27] N. Sahab and H. Hagras, “A type-2 non-singleton type-2 fuzzy logic 
system to handle linguistic and numerical uncertainties in real world 
environments,” in Proc. of IEEE Symposium on Advances in Type-2 
Fuzzy Logic Systems (T2FUZZ), 2011a, pp. 110–117. 

[28] N. Sahab and H. Hagras, “Adaptive non-singleton type-2 fuzzy logic 
systems: a way forward for handling numerical uncertainties in real 
world applications,” Int. J. of Computers, Communications & Control, 
vol. 6 no. 3, pp. 503–529, September 2011b. 

[29] A. Tellez-Velazquez and R. Cruz-Baraosa, “A CUDA‐streams inference 
machine for non‐singleton fuzzy systems,” Concurrency and 
Computation: Practice and Experience, vol. 30. No. 8, pp. e4382, April 
2018. 

[30] C. Wagner, A. Pourabdollah, J. McCulloch, R. John and J. Garibaldi, “A 
similarity-based inference engine for non-singleton fuzzy logic 
systems,” Proc. of FUZZ-IEEE 2016, Van Couver, CA, pp. 316–323. 

[31] M. H. F. Zarandi, M. Yalinezhaad and I. B. Turksen, “Two factors high 
order non singleton type-1 and interval type-2 fuzzy systems for 
forecasting time series with genetic algorithm,” Advances in Time Series 
Forecasting, vol. 2, pp. 37–75, 2017. 

[32] J. M. Mendel, “Fuzzy logic system for engineering: A tutorial,” IEEE 
Proceedings, vol. 83, pp. 345–377, 1995. 

[33] H. Bustince, “Indicator of inclusion grade for interval-valued fuzzy sets. 
Application to approximate reasoning based on interval-valued fuzzy 
sets,” Int. Journal of Approximate Reasoning, vol. 23, no. 3, pp. 137–
207, 2000. 

[34] J. M. Mendel and D. Wu, Perceptual Computing: Aiding People in 
Making Subjective Judgments, John Wiley and IEEE Press, Hoboken, 
NJ, 2010.  

[35] S. Raha, N. Pal and K. Ray, “Similarity-based approximate reasoning: 
Methodology and application,” IEEE Trans. on Systems, Man and 
Cybernetics-A, vol. 32, no. 4, pp. 541–547, 2002. 

[36] D. Wu and J. M. Mendel, “Perceptual reasoning for perceptual 
computing: a similarity-based approach,” IEEE Transactions on Fuzzy 
Systems, vol. 17, pp. 1397-1411, Dec. 2009. 

[37] S. Yeung and E. C. C. Tsang, “A comparative study on similarity-based 
fuzzy reasoning methods,” IEEE Trans. on Systems, Man and 
Cybernetics-B, vol. 27, pp. 216–227, 1997. 

 

 



 1 

 Supplementary Materials  
for  

“Comparing the Performance Potentials of Singleton and Non-
Singleton Type-1 and Interval Type-2 Fuzzy Systems in Terms of 

Sculpting the State Space” 
 

by 
 

Jerry M. Mendel, Life fellow, IEEE 
Ravikiran Chimatapu , Graduate Student Member, IEEE 

Hani Hagras, Fellow, IEEE 
 

In this document we provide Supplementary Materials (SM) for: structures of IF-THEN rules, 
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I. STRUCTURES OF IF-THEN RULES 
The following material is taken from [2, Ch. 3].  
Suppose that a fuzzy system has p inputs x1 ∈X1,..., xp ∈Xp , and one output y∈Y , where xi  is 

described by Qi  linguistic terms Txi = {Xij} j=1
Qi , and y is either described by Qy  linguistic terms, 

Ty = {Yj} j=1
Qy , or by a function g(x1,..., xp ) .  

The structure of the 	l
th  generic Zadeh rule [3] for a fuzzy system is (l = 1,...,M ) : 

                                                
   
RZ

l :  IF x1  is F1
l  and ! and xp  is Fp

l , THEN y is Gl              (S.1)
 

whereas the structure of the 	lth  generic Takagi, Sugeno and Kang (TSK, for short) rule [4], [5] for a fuzzy 
system is (l = 1,...,M ) :

 
 

                             
   
RTSK

l :  IF x1  is F1
l  and ! and xp  is Fp

l , THEN y is gl (x1,...,xp )     l = 1,..., M  (S.2) 

In both (S.1) and (S.2), F1
l ∈Tx1 , F2

l ∈Tx2 , … , and Fp
l ∈Txp  .  

The rules  RZ
l ( RTSK

l ) are used in a Mamdani (TSK) fuzzy system [4]–[6]. 
 

  

                                                
1 Reference numbers refer to the references that are at the end of this SM. 
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II.  UNIFICATION OF MAMDANI AND TSK FUZZY SYSTEMS 
The following material is taken from [2, Ch. 3].  
In (S.1), because Gl ∈Ty  is a type-1 (T1) fuzzy set, it is described by its membership function (MF) 

µ
Gl (y) . In (S.2), although y does not seem to be a fuzzy set, it can be modeled as a T1 fuzzy singleton Gl , 

so (S.2) is made to resemble a Zadeh rule, where  

                                                    
  
µ
Gl (y) ≡ 1 when y = gl (x)

0 otherwise

⎧
⎨
⎪

⎩⎪
 (S.3) 

In (S.3), 
   
x = col(x1,...,xp ) , and it is this equation that lets one unify Zadeh and TSK fuzzy systems, e.g., 

in a singleton T1 fuzzy system: the MF for a fired-rule output set Bl , is (l = 1,...,M ) : 

                          

 

Mamdani fuzzy system: µ
Bl

(y | ′x ) = f l ( ′x )!µ
Gl (y),    y∈Y

TSK fuzzy system: µ
Bl

( ′x ) = f l ( ′x ) when y = gl ( ′x )

⎧
⎨
⎪

⎩⎪
 (S.4)  

In (S.4)  
                                                               f l ( ′x ) = Ti=1

p f l ( ′xi ) = Ti=1
p µ

Fi
l ( ′xi )  (S.5)  

In [7] the following was stated:  
There does not seem to be any mention of a non-singleton TSK fuzzy logic system (FLS) in the literature; hence, this chapter 

focuses exclusively on singleton TSK FLSs—TSK FLSs, for short. Not being able to compensate for uncertain measurements, as 
we can do in a non-singleton Mamdani FLS, limits the applicability of TSK FLSs to situations where there either is no 
uncertainty (e.g., as in the design of deterministic TSK FL controllers) or all of the uncertainty can be accounted for just in the 
antecedent MFs.  

As is pointed out in [2, page 117, footnote 10]: This statement no longer is true. Since a TSK FLS is 
very ad hoc, one can define the firing level any way that one wants to. As a result, the firing level for a 
TSK FLS can be defined for both singleton and non-singleton fuzzification, as …” 

                     

		   

Mamdani fuzzy system: µ
Bl ( y | ′x ) = [Ti=1

p max
xi∈Xi

µXi
(xi | ′xi )!µ

Fi
l (xi )]!µ

Gl ( y),    y ∈Y

TSK fuzzy system: µ
Bl ( ′x ) = [Ti=1

p max
xi∈Xi

µXi
(xi | ′xi )!µ

Fi
l (xi )] when y = gl ( ′x )

⎧

⎨
⎪

⎩
⎪

 (S.6) 

It is these results that provide a unification of Mamdani and TSK fuzzy systems. Similar unified results 
for IT2 and general T2 fuzzy systems can be found in [2, Chs. 9 and 11]. 
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III. FORMULAS FOR   x *  
Consider the T1 fuzzy sets that are depicted in Fig. SM-1. Antecedent MFs are depicted in (a)–(c) of 

that figure, whereas a triangle T1 FN is in (d). Table SM-1 provides max-star composition results for 
minimum and product t-norms that should be very useful to designers of NS fuzzy systems. 
 

Antecedent MFs T1 FN 
Left shoulder Interior Right shoulder Triangle MF 

    

  lA(x) = (x − a) / (b− a)            rA(x) = (d − x) / (d − c)    lA*(x) = 1+ (x − ′x ) /δ  
  rA*(x) = 1− (x − ′x ) /δ  

(a) (b) (c) (d) 
Fig. SM-1. Three kinds of trapezoidal antecedent MFs: (a) left shoulder, (b) interior, (c) right shoulder, and (d) 
type-1 fuzzy number. 

 
TABLE SM-I. TRAPEZOIDAL ANTECEDENT MFS (BLACK), TRIANGLE FUZZY 

NUMBER (RED) AND THE RESULTS OF THE MAX-STAR COMPOSITION FOR MINIMUM 

AND PRODUCT T-NORMS. NOTE THATa   θ1 = a,  θ2 = b− a ,  θ3 = d ,  θ4 = d − c ,  

AND  θ5 = δ . 
 

Nature of antecedent MF Sup-star composition,   f ( ′x )  
Interior Minimum t-norm Product t-norm 

 

  ′x +δ > a and ′x < b  

  
x*= ′x (b− a)+δb

b− a +δ
 

 

  

f ( ′x ) = ′x − (a −δ )
b− (a −δ )

         =
′x − (θ1 −θ5)
θ2

2 +θ5

 

 
  
x*= ′x + a +δ

2
 

 

  

f ( ′x ) = ( ′x − a +δ )2

4δ (b− a)

         =
[ ′x − (θ1 −θ5)]2

4θ5θ2
2

 

 

 b ≤ ′x ≤ c  
  x*= ′x  
 

  f ( ′x ) = 1  

  x*= ′x  
 

  f ( ′x ) = 1  

 

  ′x > c and ′x −δ < d  

  
x*= ′x (d − c)+δc

d − c +δ
 

 

  

f ( ′x ) = (d +δ )− ′x
(d +δ )− c

         =
θ3 +θ5 − ′x
θ5 +θ4

2

 

  
x*= ′x + d −δ

2
 

 

  

f ( ′x ) = (d +δ − ′x )2

4δ (d − c)

         =
[θ3 +θ5 − ′x ]2

4θ5θ4
2

 

Left shoulder Set   a = b = 0  and use Interior MF results for 
 b ≤ ′x ≤ c , and   ′x > c and ′x −δ < d  

Right shoulder Set   c = d = 10  and use Interior MF results for 
  ′x +δ > a and ′x < b , and  b ≤ ′x ≤ c  

a Note that by using this parameterization (instead of using a, b, c and d) no tests are 
needed to ensure  d ≥ c ≥ b ≥ a .  

 c  d

 1

 0

  rA(x)

 x

  µA(x)

 a  b  c  d

 1

 0

  lA(x)   rA(x)

 x

  µA(x)

 a  b  10

 1

 0

  lA(x)

 x

  µA(x)

 1

 0

  A*

  lA*(x)   rA*(x)

 x

  µA*(x)

 ′x  ′x +δ ′x −δ

 a  b  c  d

 1

 0  x

 ′x

 a  b  c  d

 1

 0  x

 ′x
 c

 a  b  c  d

 1

 0  x

 ′x
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IV. SIX TABLES FROM [1] 
The following tables are included here for the convenience of the readers. The equation numbers that 

are in some of the tables refer to equations in [1]. 
 
 

TABLE SM-II 
NOTATIONS USED FOR FIRST-ORDER RULE PARTITIONS. IN THIS TABLE, 

SUBSCRIPT * REFERS TO EITHER T1 OR IT2. 
 

First-Order Rule Partitions 
Symbol

 
Definition   (i = 1,..., p)  

  
P*

1(kxi
| xi )  T1 or IT2 first-order rule partition of  Xi  

kxi  Counter/index of T1 or IT2 first-order rule partition 
of  Xi ; 

  
kxi

= 1,..., N*
1( Xi )  

N*
1(Xi )  Total number of T1 or IT2 first-order rule partitions 

of  Xi  

  
N R (kxi

)  Fixed number of same rules fired in each P*
1(kxi | xi )  

P*
1(kx1 ,kx2 ,...,kxp )  T1 or IT2 first-order rule partition of 

   
X1 × X2 ×!× X p , numbered 

  
(kx1

,kx2
,...,kxp

)  

N*
1(X1,X 2 ,...,X p )  Total number of T1 or IT2 first-order rule partitions 

of 
   
X1 × X2 ×!× X p [use (6)] 

  
N R (kx1

,kx2
,...,kxp

)  Fixed number of rules that are fired in each 
P*
1(kx1 ,kx2 ,...,kxp ) [use (7)] 

 
 
 

TABLE SM-III 
TWO-STEP PROCEDURE FOR ESTABLISHING T1 (IT2) FIRST-ORDER RULE 

PARTITION QUANTITIES FOR A SINGLE VARIABLE,  xi , IN A T1 (IT2) FUZZY 

SYSTEM, ON A PLOT (SKETCH) OF ITS MFS (FOUS) 
 

Step Description 
1 Scan the axis of 

 xi  with an imaginary dashed vertical line from 
left to right. Count the number of intersections of this line with 
the MFs (FOUs) of 

 xi ; they represent the number of same-rules 

  
[N R (kxi

)]  whose firing levels (intervals) contribute to the output 

of a T1 (IT2) fuzzy system. When this number, or the nature of 
the same rules, changes draw a dashed vertical line; it represents 
the boundary of a T1 (IT2) first-order rule partition. Insert a 
dashed vertical line at the start and at the end of  Xi . For each 

 xi , the interval of real numbers between adjacent dashed 
vertical lines is its T1 (IT2) first-order rule partition. 

2 Count the number of P*
1(kxi | xi ) , the total being   N*

1( Xi ) ; then, 

  
kxi

= 1,..., N*
1( Xi ) . 
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TABLE SM-IV 
FOUR-STEP PROCEDURE FOR ESTABLISHING T1 (IT2) FIRST-ORDER RULE 

PARTITION QUANTITIES FOR X1 × X 2  IN A T1 (IT2) FUZZY SYSTEM 
 

Step Description 
1 Locate the T1 (IT2) first-order rule partitions of x1    (x2 )  on 

the horizontal (vertical) axis, and establish 
  
N R (kx1

) , 
  
N R (kx2

) , 

  N*
1( X1)  and   N*

1( X2 )  
2 Extend all dashed T1 (IT2) first-order rule partitions (turning 

them into solid lines) so that they cover X1 × X 2 . The results 
from doing this will be a collection of rectangles (or squares). 

3 Compute NR (kx1 ,kx2 )  using (7). 

4 Compute   N*
1( X1, X2 )  using (6). 

 
 
 

TABLE SM-V 
NOTATION USED FOR SECOND-ORDER RULE PARTITIONS. SUBSCRIPT * 

REFERS TO EITHER T1 OR IT2. 
 

Second-Order Rule Partitions 
Symbol Definition 

  
(kxi

= 1,..., N*
1(xi ))  

P*
2 (kxi ,mkxi

| xi )  T1 or IT2 second-order rule partition of  Xi , 

often abbreviated to 
  
(kxi

,mkxi

)  

 
mkxi  

Counter/index of T1 or IT2 second-order rule 
partition of  Xi ; mkxi

=1,...,N*
2 (kxi | xi )  

N*
2 (kxi | xi )  Total number of T1 or IT2 second-order rule 

partitions within T1 or IT2 first-order rule 
partition 

 
kxi

of  Xi  

N*
2 (Xi )  Total number of T1 or IT2 second-order rule 

partitions of  Xi  

  
P*

2((kx1
,kx2

),m(kx1
,kx2

) )  T1 or IT2 second-order rule partition of  X1 × X2   

  
m(kx1

,kx2
)  Counter/index of T1 or IT2 second-order rule 

partition of   X1 × X2;
  
m(kx1

,kx2
) = 1,..., N*

2(kx1
,kx2

)  

N*
2 (kx1 ,kx2 )  Total number of T1 or IT2 second-order rule 

partitions within the 
  
(kx1

,kx2
) th T1 or IT2 first-

order rule partition of   X1 × X2  

  Z( Xi )   Number of times that 
  
N*

2(kxi
| xi ) = 0  

  N*
′2 ( Xi )    N*

2( Xi )+ Z( Xi )  

N*
2 (X1,X 2 ,…,X p )  Total number of T1 or IT2 second-order rule 

partitions of 
   
X1 × X2 ×!× X p [use (13)] 
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TABLE SM-VI 

FOUR-STEP PROCEDURE FOR ESTABLISHING T1 (IT2) SECOND-ORDER RULE 

PARTITION QUANTITIES FOR A SINGLE VARIABLE  xi , IN A T1 (IT2) FUZZY 

SYSTEM, ON A PLOT (SKETCH) OF THEIR RESPECTIVE  
FIRST-ORDER RULE PARTITIONS 

 
Step Description 
1 Scan the axis of xi  with an imaginary dotted vertical line from left 

to right. Wherever a MF (LMF or UMF) changes its formula, draw a 
dotted vertical line. If the change in formula occurs at a boundary of 
a T1 (IT2) first-order rule partition, then do not draw such a vertical 
dotted line. 

2 The interval of real numbers between adjacent dotted vertical lines or 
between a dotted line and a dashed (or dashed and dotted) line is its 
T1 (IT2) second-order rule partition 

  
[P*

2(kxi
,mkxi

| xi )] . 

3 Each T1 (IT2) first-order rule partition has from zero to a finite 
number of T1 (IT2) second-order rule partitions [

  
N*

2(kxi
| xi ) ]. 

4 Count the total number of 
  
N*

2(kxi
| xi ) , the total being   N*

2( Xi ) . 

 
 
 

TABLE SM-VII 
FOUR-STEP PROCEDURE FOR ESTABLISHING T1 (IT2) SECOND-ORDER RULE 

PARTITION QUANTITIES FOR X1 × X 2  IN A T1 (IT2) FUZZY SYSTEM, ON A 

PLOT (SKETCH) OF THE FIRST-ORDER RULE PARTITIONS. 
 

Step Description 
1 Locate the T1 (IT2) second-order rule partitions of x1    (x2 )  on 

the horizontal (vertical) axis. 
2 Extend all dotted T1 second-order rule partitions so that they 

cover X1 × X 2 . The results from doing this will be a collection of 
rectangles (or squares).  

3 Each T1 (IT2) first-order rule partition on   X1 × X2  has from zero 
to a finite number of T1 (IT2) second-order rule partitions. 
Establish 

  
N*

2(kx1
,kx2

)  by counting. 

4 Count the total number of 
  
N*

2(kx1
,kx2

) , the total being 

  N*
2( X1, X2 ) . 
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V. REASON FOR Z(Xj) IN (6) 
The following is taken from [1, Section III.B]: 

Interesting Observations: In Figs. 6a,b [provided below as Fig. SM-2] observe that it is only in regions of   X1 × X2  
where both 

  x1  and   x2  individually have no second-order rule partitions that such regions also have no second-order rule partitions. There are 

four such regions on Fig. SM-2a, two of which are   [a,b]× [a,b]  and   [a,b]× [c,d] , and there are nine such regions on Fig. SM-2b, 
two of which are   [0, ′a ]× [0, ′a ]  and   [ ′b , ′c ]× [ ′b , ′c ] . In such regions multiplying 0 by 0 gives the correct number of second-order 

rule partitions, which is also 0. On the other hand, regions of   X1 × X2  
where either (but not both)   x1  and   x2  individually have no 

second-order rule partitions jointly have a non-zero number of second-order rule partitions. There are six such regions on Fig. SM-
2a, three of which are   [a,b]× [0,a] ,   [a,b]× [b,c] and   [c,d]× [d ,10] , and six such regions on Fig. SM-2b, three of which are 

  [0, ′a ]× [ ′a , ′b ] ,   [0, ′a ]× [ ′c , ′d ]  and   [ ′d ,10]× [ ′c , ′d ] . In such regions, multiplying 0 by any non-zero number always gives 0, which 
is not the correct number of the region’s second-order rule partitions. If, instead the 0 is replaced by 1 then multiplying 1 by a non-
zero number gives the correct number of the region’s second-order rule partitions.  

These observations lead to the following novel way to compute
   

N*
2( X1, X2 ) : Let the number of times that   (i = 1,2)  

  
N*

2(kxi
| xi ) = 0  be called   Z( Xi ) , and let  

                                                                                 N*
′2 ( Xi ) ≡ N*

2( Xi )+ Z( Xi )   (S.7) 

Then 

 
                                                                          N*

2( X1, X2 ) = N*
′2 ( X1)N*

′2 ( X2 )− Z( X1)Z( X2 )   (S.8) 

 

  
(a) (b) 

Fig. SM-2. [1, Fig. 6]  Example 4 figures for Table SM-VII Steps 1-3: (a) 
T1 FSs and (b) IT2 FSs. 
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VI. MORE EXAMPLES 
Additional examples of NS first and second-order rule partitions are given in this section.  
 
Example SM-1 (IT2 first-order rule partitions): This example is analogous to Example 2 in the main 

body of this paper. The FOUs that are in Fig. SM-4 were obtained from those in Fig. 5 (in the main body 
of this paper) by using the same UMFs for each FOU, and by changing the shapes of the LMFs from 
triangles to trapezoids. The results for Steps 2 and 3 in Table I (in the main body of this paper) are shown 
in Fig. SM-4 b,c for a 4%T1 FN and a 12%T1 FN, respectively. Using the mnemonics USL and DSR (see 
Subsection III.A) helps when deciding whether the dashed orange partition lines move to the left or to the 
right from their locations in the S case. 
 

 
(a) S IT2 

 
(b) T1 NS IT2 (4%T1 FN) 

 
(c) T1 NS IT2 (12% T1 FN) 

Fig. SM-4. Example SM-4 figures; numbers that are above the FOUs 
denote the numerical names for the five IT2 first-order rule partitions 
(denoted 

  
PIT 2

1 (kxi
| xi ) in [1], where 

  
kxi

= 1,...,5) ; see, also Table SM-

II). 
 
  

xi ′a  ′b  ′c  ′d  10 0

 1  2  3  4  5

 ′e  ′f  ′g  ′h

   
µ !Wi

(xi )

  !L   !M   !H

 ′a −δ  ′b +δ  ′d +δ

xi ′a  ′b  ′c  ′d  10 0

 1  2  3  4  5

 ′e  ′f  ′g  ′h

   
µ !Wi

(xi )

  !L   !M   !H

 ′c −δ

 ′a −δ  ′b +δ  ′c −δ  ′d +δ

xi ′a  ′b  ′c  ′d  10 0

 1  2  3  4  5

 ′e  ′f  ′g  ′h

   
µ !Wi

(xi )

  !L   !M   !H
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Example SM-2: This example is analogous to Example 6 in the main body of this paper, and is a 
continuation of Example SM-1. The results for Table III’s (in the main body of the paper) Steps 1–3 are 
shown in Figs. SM-5a–c.  

Observe that for this example all of the fuzzy systems have the same number (16) of IT2 second-order 
rule partitions, but the locations of those partitions change as the support of the FN changes. 
 

 
(a) S IT2: 16 second-order rule partitions 

 
kxi

 1 2 3 4   5= N IT 2
1 ( Xi )  

  
N R (kxi

)  1 2 1 2 1 

  
N IT 2

2 (kxi
| xi )  0 5 4 4 3   N IT 2

2 ( Xi ) = 16  

 
(b) T1 NS IT2 (4% T1 FN): 16 second-order 

rule partitions 

 
kxi

 1 2 3 4   5= N IT 2
1 ( Xi )  

  
N R (kxi

)  1 2 1 2 1 

  
N IT 2

2 (kxi
| xi )  0 5 4 4 3   N IT 2

2 ( Xi ) = 16  

 
(c) T1 NS IT2 (12%T1 FN): 16 second-order 

rule partitions 

 
kxi

 1 2 3 4   5= N IT 2
1 ( Xi )  

  
N R (kxi

)  1 2 1 2 1 

  
N IT 2

2 (kxi
| xi )  0 6 2 5 3   N IT 2

2 ( Xi ) = 16  

Fig. SM-5. Figures for Table III’s (in the main body of this paper) Steps 1–3. The circled numbers denote the 
number of IT2 second-order rule partitions in a respective T1 NS IT2 first-order rule partition (denoted 

  
N IT 2

2 (kxi
| xi ) in [1], where 

  
kxi

= 1,...,5 ; see, also Table SM-II). 

  

xi ′a  ′b  ′c  ′d  10 0

 1  2  3  4  5

 ′e  ′f  ′g  ′h

   
µ !Wi

(xi )

  !L   !M   !H
⓪ ⓹ ⓸ ⓸ ⓷ 

xi ′a  ′b  ′c  ′d  10 0

 1  2  3  4  5

 ′e  ′f  ′g  ′h

   
µ !Wi

(xi )

  !L   !M   !H
⓪ ⓹ ⓸ ⓸ ⓷ 

⓪ ⓺ ⓹ ⓷ 

xi ′a  ′b  ′c  ′d  10 0

 1  2  3  4  5

 ′e  ′f  ′g  ′h

   
µ !Wi

(xi )

  !L   !M   !H⓶ 
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Example SM-3: This example is very similar to the one in Section III-B.4. It is taken from the IT2 FPID 

controller example that is in [1, Section IV, Fig. 8] (see, also, [2, Fig. 10.20]. In that paper (book), which 
was for S fuzzification, there were two IT2 first-order rule partitions and no IT2 second-order rule 
partitions. Fig. SM-6 demonstrates that, by using T1 NS fuzzification (12%2 T1 FN) we have been able to 
increase the number of IT2 first-order rule partitions from two to four, a 100% increase. There are no IT2 
second-order rule partitions. The rule-crossover phenomenon occurs in the IT2 first-order rule partitions 2 
and 3. 

As is mentioned in the main body of this paper, being able to increase the number of IT2 first-order rule 
partitions by means of NS fuzzification is a new phenomenon. This example is a further illustration of this 
new phenomenon.  

 

 
Fig. SM-6. Example SM-3 figure. 

  

                                                
2 The same results are obtained if a 4% or 24% T1 FN is used. 

0 1

	 !N 	 
!Z
L 	 !P

 1  2  3  4

⓪ ⓪

⓪⓪

	 
!Z
R

 −1
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VII. MODIFICATIONS NEEDED FOR IT2 FNS 
Section II in the main body of this paper states: “In this paper results are provided only for the T1 NS 

fuzzifier, because an understanding of NS fuzzification in an IT2 fuzzy system, in terms of sculpting the 
state space, can be accomplished by examining it only for the T1 NS situation.” In this section we provide 
what the modifications are when the measured value of a variable is modeled as an IT2 FN. 

An IT2 FN is an IT2 FS whose lower and upper MFs are T1 FNs. For very interesting discussions about 
different kinds of IT2 FNs see [8], and for why the one that is defined here is used, see [2, p. 283]. The 
IT2 FN that is used here is depicted in Fig. SM-7. When IT2 NS fuzzification is used in an IT2 fuzzy 
system, that system is called an IT2 NS IT2 fuzzy system.  
 

 
Fig. SM-7. Triangle IT2 FN, whose UMF is the same as the MF of the T1 FN that is used in the paper. 
 
The firing interval for an IT2 NS IT2 fuzzy system is [2, Ch. 9]: 

                                       

     

[ f l ( ′x ), f l ( ′x )] = [Ti=1
p f l ( ′xi ),Ti=1

p f l ( ′xi )]

f l ( ′xi ) = max
xi∈Xi

µ !Xi
(xi | ′xi )!µ !Fi

l (xi ) IT2 NS IT2 fuzzy system 

f l ( ′xi ) = max
xi∈Xi

µ !Xi
(xi | ′xi )!µ !Fi

l (xi )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (S.9) 

Observe that: In an IT2 NS IT2 fuzzy system, it is the interaction of the LMF of the IT2 FN and the 
LMF of an antecedent’s FOU, as well as the interaction of the UMF of the IT2 FN and the UMF of an 
antecedent’s FOU that contribute to the max-star computations.  

Because only UMFs are used to determine IT2 first-order rule partitions, and the UMF of the IT2 FN in 
Fig. SM-7 has the same support  (2δ )  as the MF of the T1 FN used in the paper, Tables I and II in the 
paper can be used as is to find the IT2 first-order rule partitions of  Xi  and   X1 × X2 . 

Because IT2 second-order rule partitions use both UMFs and LMFs IT2 second-order rule partitions 
are changed as a result of using an IT2 FN.  

Definition 3NS is expanded to: 
 
Definition 3NS (for IT2 NS fuzzification): In an IT2 NS IT2 fuzzy system, an IT2 second-order rule 

partition line of  Xi  occurs where the location of the value of  xi  ( xi
∗ ) at which the maximum occurs in 

the second or third line of (S.9) changes from one piecewise linear segment of an antecedent’s UMF or 
LMF to another such segment. 

 
Definition 10 is expanded to: 
 
Definition 10 (for IT2 NS fuzzification): Appropriate locations for IT2 second-order rule partition lines 

in an IT2 NS IT2 fuzzy system (that uses a triangle IT2 FN) are on the   xi  axis  and are found by locating 
(a) where a LMF or an UMF has a MF kink (Def. 4) at unity membership grade (Fig. 8a,b), and (b) where 
all first encounters (Def. 5) of upward-sloping LMF lines (between the LMFs of the IT2 FN and an 
antecedent FOU) and all last encounters (Def. 6) of downward-sloping LMF lines (between the LMFs of 
the IT2 FN and an antecedent FOU) occur (Fig. 8c), at zero membership grade. 

 

 ′xi

 2δ1

 IT2 FN

 2δ

 1

 0  xi



 12 

In Definitions 5 (first encounter) and 6 (last encounter) δ must now be replaced by  δ1  (Fig. SM-7). The 
mnemonic USL, DSR for locating the IT2 second-order rule partition lines can be modified as follows: for 
a T1 NS IT2 fuzzy system, (USL, DSR) using δ , and for an IT2 NS IT2 fuzzy system, (USL, DSR) using 

 δ1 .   

Table III in the paper can then be used to establish IT2 second-order rule partition quantities for  Xi  in 
an IT2 NS IT2 fuzzy system; and, Table SM-VII can be used to establish IT2 second-order rule partition 
quantities for   X1 × X2 . 

Observation: Drawing an analogy between a sculptor of stone, who uses different size chisels on 
different portions of a figure, IT2 NS fuzzification provides the fuzzy system designer with two chisels 
with which to sculpt the state space, one of size δ  and the other of size  δ1 .   

No examples of IT2 second-order rule partitions are provided because they will look very similar to the 
ones that are already given either in the paper or above in this SM.  
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VIII.  INFORMATION ABOUT THE T1 AND IT2 FUZZY CONTROLLERS AS WELL AS CONTROL SURFACES 
FOR MAX-PRODUCT INFERENCE 

 
Information about the T1 and IT2 fuzzy controllers that led to the control surfaces which are depicted in 

Fig. 12 in the main body of this paper is given in Table SM-VIII and SM-IX, respectively. The T1 MFs 
for L, M and H are in Fig. 4, whereas the comparable FOUs are in Fig. 5. 

 
TABLE SM-VIII. T1 FUZZY SYSTEM WITH 
TWO INPUTS, NINE RULES AND TRIANGLE 

CONSEQUENT MFS (A, B, C) 
 

  x1    x2  A B C 

L L -2 -1 0 
L M -1.5 -0.5 0.5 
L H -1 0 1 
M L -1.5 -0.5 0.5 
M M -1 0 1 
M H -0.5 0.5 1.5 
H L -1 0 1 
H M -0.5 0.5 1.5 
H H 0 1 2 

 
TABLE SM-IX. IT2 FUZZY SYSTEM WITH TWO INPUTS, NINE RULES AND TRIANGLE CONSEQUENT UMF 

(A, B, C) AND LMF (D, E, F) 
 

  x1    x2  
UMF LMF Centroid 

A B C D E F  cl   cr  

L L -2 -1 0 -1.9 -1 -0.1 -1.03 -0.96 
L M -1.5 -0.5 0.5 -1.4 -0.5 0.4 -0.53 -0.46 
L H -1 0 1 -0.9 0 0.9 -0.03 0.03 
M L -1.5 -0.5 0.5 -1.4 -0.5 0.4 -0.53 -0.46 
M M -1 0 1 -0.9 0 0.9 -0.03 0.03 
M H -0.5 0.5 1.5 -0.4 0.5 1.4 0.46 0.53 
H L -1 0 1 -0.9 0 0.9 -0.03 0.03 
H M -0.5 0.5 1.5 -0.4 0.5 1.4 0.46 0.53 

 
Fig. SM-8 depicts the control surfaces when max-product inference is used. When the max-product and 

max-min control surfaces are compared it is clear that the former are much smoother than the latter. This 
is due to the discontinuous derivative nature of the max-min operation, whereas the max-product has a 
continuous derivative nature. 
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(a) S T1 (b) S IT2 

  
(c) NS T1 (4% T1 FN) (d) T1 NS IT2 (4%T1 FN) 

  
(e) NS T1 (12%T1 FN) (f) T1 NS IT2 (12%T1 FN) 

  
(g) NS T1 (24%T1 FN) (h) T1 NS IT2 (24%T1 FN) 

Fig. SM-8. Example 8 figures when max-product inference is used. Each 
figure is a T1 (IT2) control surface for its corresponding figure that is in Figs. 
11 and 16. 
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